Red Iberoamericana de Docentes de IBERTIC

Educación y ciencia: Red Iberoamericana de Docentes de IBERTIC

Martin Gardner fue uno de los más prolíficos proveedores de ideas sobre matemática recreativa. Tengo la tentación de decir que fue “el más” prolífico de todos, pero en todo caso eso forma parte de la deformación que tenemos todos los humanos de encontrar siempre “el más” de todo: el que salta más alto, el que corre más rápido, el que llega más veces primero, el que más se destaca, el que más escribió, el que más rindió, etc., etc., etc.

De todas formas, mientras algunas cosas son opinables (el que “más” gustó, el que “más” convenció, el que “más” impresionó, etc.) hay otras que son “medibles”. Por ejemplo, se podría hacer una lista de todas las publicaciones de todos los autores que escribieron artículos sobre matemática creativa, contar y detectar cuál fue el que “más” contribuyó y se resuelve la cuestión. De la misma forma que quien salta más alto es fácilmente detectable tanto como el que corre más rápido, etc., etc.. ¿Por qué tendremos los humanos entonces esa necesidad?

Naturalmente, se abre otra discusión: un autor pudo haber escrito en forma muy prolífica y su obra no dejar ninguna huella. Y otros, escribir muy poco y, sin embargo, haber cambiado la historia de la humanidad; Einstein es un buen ejemplo. Escribió muy poco, publicó menos, pero no hay artículo más citado dentro de la física que su Teoría de la Relatividad. Es decir, la cantidad no garantiza calidad, ni mucho menos.

Luego de esta irrelevante digresión, voy a escribir acá –tal como había prometido– uno de los problemas de Martin Gardner. Dice así: Suponga que un amigo y yo nos encontramos en una reunión familiar. Sobre una mesa hay tres monedas. Mi amigo me hace la siguiente propuesta:

“Voy a tirar tres monedas al aire. Si todas salen ‘cara’, te doy diez pesos. Si las tres caen ‘ceca’, también te doy diez pesos. Pero si caen de cualquier otra forma, con cualquier otra combinación de caras y cecas que no sean todas iguales, entonces vos me tenés que dar cinco pesos a mí.”

Supongamos que vamos a tirar al aire las tres monedas varias veces y usted fuera mi asesor en este juego, ¿qué me aconsejaría? ¿Me conviene aceptar la propuesta de mi amigo?

No quiero avanzar mucho más sin darle oportunidad para que usted pueda dedicarle un rato y pensar qué es lo que más me conviene hacer. Yo sigo acá abajo.

Una forma de pensar el problema

Voy a proponer acá un razonamiento y la/lo invito a que le dedique unos minutos para analizar y decidir qué piensa sobre él. No se preocupe si lo que piensa está bien o mal, lo único que interesa es que invierta un mínimo de tiempo para decidir sobre su veracidad.

Uno podría pensar el problema así:

“Al tirar las tres monedas, seguro que dos de ellas tienen que caer del mismo lado (o bien dos caras o bien dos cecas). Esto sucede porque no hay una tercera opción. Por lo tanto, al tirar las tres monedas, seguro que dos repetidas tiene que haber. ¿Qué puede pasar con la tercera?: que sea igual a las otras dos o que sea distinta. Las posibilidades de que sea igual o distinta son iguales: 50 y 50. O lo que es lo mismo, la probabilidad de que salga igual o distinta es 1/2”.

¿Qué piensa usted? ¿Estará bien esa línea argumental?

Si a usted le parece que lo que escribí más arriba es correcto, usted me tiene que asesorar que acepte la apuesta de mi amigo, ya que yo tengo las mismas posibilidades que él de ganar. Pero además, si yo gano (o sea, si las tres monedas salen del mismo lado), él me tiene que pagar diez pesos, mientras que si gana él, yo le tengo que pagar cinco. O sea, las posibilidades parecen ser las mismas de ganar o de perder, pero cuando yo gano con las monedas, gano el doble de dinero que el que le tengo que pagar a él cada vez que pierdo. Parece un muy buen negocio para mí.

Sin embargo, estoy casi seguro de que usted detecta o intuye que hay algo que no está bien en ese razonamiento. Hay algo que hace ruido. ¿Qué será?

Miremos el problema de otra forma

Lo  seguimos en la fuente: Página 12

Visitas: 53

Etiquetas: Matemática

Comentar

¡Necesitas ser un miembro de Red Iberoamericana de Docentes de IBERTIC para añadir comentarios!

Participar en Red Iberoamericana de Docentes de IBERTIC

© 2014   Creado por IBERTIC -OEI.   Tecnología de

Emblemas  |  Reportar un problema  |  Términos de servicio